1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.85 | 3.3 | 3.9 | 2.95 | 1.32 | 1.65 | 2.05 | 1.22 | 3.6 | 1.84 | 1.82 | 1.18 | 1.25 | 1.78 | 2.95 | 1.88 | 3.8 | 17 |
Ημερομηνία | Αγωνιστική | Αγώνας | Διοργάνωση |
---|---|---|---|
15/07/2025 | 1st Qualifying Round |
Λίνκολν Ρεντ Ιμπς
1 - 0
Βίκινγκουρ
|
UEFA Τσάμπιονς Λιγκ |
Δ/Α | Αγώνας |
---|---|
ΦΑΡΠ / 26 |
Σουντουρόι
0 - 4
Βίκινγκουρ
|
ΦΑΡΠ / 25 |
Βίκινγκουρ
3 - 0
TB Τβοερόιρι
|
ΦΑΡΠ / 24 |
Τόρσαβν Β36
1 - 1
Βίκινγκουρ
|
ΦΑΡΠ / 23 |
Βίκινγκουρ
2 - 1
07 Vestur
|
ΦΑΡΠ / 22 |
Κλάκσβικ
0 - 0
Βίκινγκουρ
|
Δ/Α | Αγώνας |
---|---|
Premier Division / 8 |
College 1975
0 - 3
Λίνκολν Ρεντ Ιμπς
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Ζρίνσκι Μόσταρ
5 - 0
Λίνκολν Ρεντ Ιμπς
|
Premier Division / 6 |
Λίνκολν Ρεντ Ιμπς
7 - 0
Europa Point
|
Premier Division / 1 |
Λίνκολν Ρεντ Ιμπς
7 - 0
Μάγκπις
|
Premier Division / 5 |
Lynx
2 - 5
Λίνκολν Ρεντ Ιμπς
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Βίκινγκουρ | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Λίνκολν Ρεντ Ιμπς | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
9 | 3 | 3 | 0 | 0 | 13 | 3 | 10 | 1 | 0 | 0 | 4 | 0 | 4 | 2 | 0 | 0 | 9 | 3 | 6 |
2 | ![]() |
9 | 3 | 3 | 0 | 0 | 9 | 0 | 9 | 1 | 0 | 0 | 3 | 0 | 3 | 2 | 0 | 0 | 6 | 0 | 6 |
3 | ![]() |
9 | 3 | 3 | 0 | 0 | 8 | 0 | 8 | 2 | 0 | 0 | 6 | 0 | 6 | 1 | 0 | 0 | 2 | 0 | 2 |
4 | ![]() |
7 | 3 | 2 | 1 | 0 | 12 | 7 | 5 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 1 | 0 | 8 | 6 | 2 |
5 | ![]() |
7 | 3 | 2 | 1 | 0 | 6 | 2 | 4 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 1 | 0 | 4 | 2 | 2 |
6 | ![]() |
6 | 2 | 2 | 0 | 0 | 8 | 2 | 6 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 5 | 1 | 4 |
7 | ![]() |
6 | 3 | 2 | 0 | 1 | 8 | 2 | 6 | 1 | 0 | 1 | 4 | 2 | 2 | 1 | 0 | 0 | 4 | 0 | 4 |
8 | ![]() |
6 | 2 | 2 | 0 | 0 | 7 | 1 | 6 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 5 | 0 | 5 |
9 | ![]() |
6 | 3 | 2 | 0 | 1 | 9 | 4 | 5 | 1 | 0 | 1 | 7 | 3 | 4 | 1 | 0 | 0 | 2 | 1 | 1 |
10 | ![]() |
6 | 2 | 2 | 0 | 0 | 5 | 2 | 3 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | 2 | 1 |
11 | ![]() |
4 | 3 | 1 | 1 | 1 | 8 | 6 | 2 | 1 | 0 | 1 | 7 | 5 | 2 | 0 | 1 | 0 | 1 | 1 | 0 |
12 | ![]() |
4 | 2 | 1 | 1 | 0 | 3 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 | 0 |
13 | ![]() |
3 | 2 | 1 | 0 | 1 | 5 | 2 | 3 | 1 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 1 | 1 | 2 | -1 |
14 | ![]() |
3 | 2 | 1 | 0 | 1 | 5 | 3 | 2 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 1 | 1 | 2 | -1 |
15 | ![]() |
3 | 2 | 1 | 0 | 1 | 5 | 3 | 2 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 1 | 1 | 2 | -1 |
16 | ![]() |
3 | 2 | 1 | 0 | 1 | 6 | 6 | 0 | 1 | 0 | 0 | 5 | 1 | 4 | 0 | 0 | 1 | 1 | 5 | -4 |
17 | ![]() |
3 | 2 | 1 | 0 | 1 | 3 | 3 | 0 | 1 | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | -1 |
18 | ![]() |
3 | 3 | 1 | 0 | 2 | 7 | 8 | -1 | 1 | 0 | 0 | 5 | 1 | 4 | 0 | 0 | 2 | 2 | 7 | -5 |
19 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 3 | -1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 3 | -2 |
20 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 5 | -3 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 5 | -4 |
21 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 5 | -3 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 4 | -4 |
22 | ![]() |
3 | 3 | 1 | 0 | 2 | 4 | 9 | -5 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 2 | 2 | 8 | -6 |
23 | ![]() |
3 | 3 | 1 | 0 | 2 | 3 | 9 | -6 | 0 | 0 | 2 | 0 | 8 | -8 | 1 | 0 | 0 | 3 | 1 | 2 |
24 | ![]() |
2 | 2 | 0 | 2 | 0 | 6 | 6 | 0 | 0 | 1 | 0 | 4 | 4 | 0 | 0 | 1 | 0 | 2 | 2 | 0 |
25 | ![]() |
2 | 2 | 0 | 2 | 0 | 4 | 4 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 2 | 2 | 0 |
26 | ![]() |
2 | 3 | 0 | 2 | 1 | 1 | 5 | -4 | 0 | 0 | 1 | 1 | 5 | -4 | 0 | 2 | 0 | 0 | 0 | 0 |
27 | ![]() |
2 | 3 | 0 | 2 | 1 | 5 | 10 | -5 | 0 | 1 | 1 | 3 | 8 | -5 | 0 | 1 | 0 | 2 | 2 | 0 |
28 | ![]() |
1 | 2 | 0 | 1 | 1 | 3 | 6 | -3 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
29 | ![]() |
1 | 2 | 0 | 1 | 1 | 2 | 5 | -3 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 3 | -3 |
30 | ![]() |
1 | 3 | 0 | 1 | 2 | 2 | 5 | -3 | 0 | 1 | 1 | 2 | 4 | -2 | 0 | 0 | 1 | 0 | 1 | -1 |
31 | ![]() |
1 | 3 | 0 | 1 | 2 | 4 | 8 | -4 | 0 | 1 | 1 | 4 | 6 | -2 | 0 | 0 | 1 | 0 | 2 | -2 |
32 | ![]() |
1 | 3 | 0 | 1 | 2 | 1 | 8 | -7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 8 | -7 |
33 | ![]() |
1 | 3 | 0 | 1 | 2 | 1 | 9 | -8 | 0 | 1 | 1 | 0 | 5 | -5 | 0 | 0 | 1 | 1 | 4 | -3 |
34 | ![]() |
0 | 3 | 0 | 0 | 3 | 2 | 7 | -5 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 2 | 0 | 4 | -4 |
35 | ![]() |
0 | 2 | 0 | 0 | 2 | 1 | 6 | -5 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 1 | 1 | 4 | -3 |
36 | ![]() |
0 | 2 | 0 | 0 | 2 | 0 | 6 | -6 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 1 | 0 | 4 | -4 |