Ημερομηνία | Αγωνιστική | Αγώνας | Διοργάνωση |
---|---|---|---|
31/08/2025 | 2 |
Dallas Trinity W
1 - 0
Brooklyn W
|
USL Super League |
20/03/2025 | 24 |
Brooklyn W
0 - 3
Dallas Trinity W
|
USL Super League |
09/03/2025 | 22 |
Dallas Trinity W
6 - 0
Brooklyn W
|
USL Super League |
14/12/2024 | 18 |
Dallas Trinity W
0 - 1
Brooklyn W
|
USL Super League |
26/09/2024 | 6 |
Brooklyn W
2 - 0
Dallas Trinity W
|
USL Super League |
Δ/Α | Αγώνας |
---|---|
USL Super League / 3 |
Brooklyn W
1 - 1
Spokane Zephyr W
|
USL Super League / 2 |
Dallas Trinity W
1 - 0
Brooklyn W
|
USL Super League / 1 |
Brooklyn W
2 - 1
Tampa Bay Sun W
|
USL Super League / 33 |
Brooklyn W
0 - 0
Carolina Ascent W
|
USL Super League / 31 |
Brooklyn W
2 - 2
Spokane Zephyr W
|
Δ/Α | Αγώνας |
---|---|
USL Super League / 2 |
Dallas Trinity W
1 - 0
Brooklyn W
|
USL Super League / 1 |
Dallas Trinity W
2 - 1
Spokane Zephyr W
|
USL Super League / 1 |
Tampa Bay Sun W
2 - 1
Dallas Trinity W
|
USL Super League / 34 |
Dallas Trinity W
2 - 1
Carolina Ascent W
|
USL Super League / 33 |
Fort Lauderdale United W
1 - 0
Dallas Trinity W
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Brooklyn W | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 1 |
Dallas Trinity W | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 0 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |