1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8 | 3.9 | 4 | 4.75 | 1.16 | 2.42 | 1.51 | 1.52 | 2.42 | 1.51 | 2.4 | 1.23 | 1.24 | 1.98 | 4.75 | 2.02 | 2.57 | 13.5 |
Ομάδα | Θέση | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
---|---|---|---|---|---|---|---|---|---|
Γκενκ | 9 | 3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
Φερεντσβάρος | 20 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
Ημερομηνία | Αγωνιστική | Αγώνας | Διοργάνωση |
---|---|---|---|
09/11/2023 | 4 |
Φερεντσβάρος
1 - 1
Γκενκ
|
Γιουρόπα Κόνφερενς Λιγκ |
26/10/2023 | 3 |
Γκενκ
0 - 0
Φερεντσβάρος
|
Γιουρόπα Κόνφερενς Λιγκ |
Δ/Α | Αγώνας |
---|---|
ΒΕΛ1 / 9 |
Σεντ Τρούιντεν
1 - 2
Γκενκ
|
EUROPA / 1 |
Ρέιντζερς
0 - 1
Γκενκ
|
ΒΕΛ1 / 8 |
Γκενκ
1 - 2
Ουνιόν Σεντ Ζιλουάζ
|
ΒΕΛ1 / 5 |
Γκενκ
0 - 1
Σαρλερουά
|
ΒΕΛ1 / 7 |
Άντερλεχτ
1 - 1
Γκενκ
|
Δ/Α | Αγώνας |
---|---|
ΟΥΓ1 / 8 |
Γκιόρι ΕΤΟ
0 - 2
Φερεντσβάρος
|
EUROPA / 1 |
Φερεντσβάρος
1 - 1
Βικτόρια Πλζεν
|
ΟΥΓ1 / 7 |
Φερεντσβάρος
2 - 2
Ντιοσγκιόρι
|
ΟΥΓΚ / 7 |
Szarvaskend
0 - 15
Φερεντσβάρος
|
ΟΥΓ1 / 6 |
Ντέμπρετσεν
0 - 3
Φερεντσβάρος
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Γκενκ | 3 | 2 | 1 | 1 | 1 | 0 | 2 | 1 | 1 |
Φερεντσβάρος | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 1 | 3 |
2 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
5 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
6 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
10 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
11 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
12 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
13 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | ![]() |
1 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 0 |
16 | ![]() |
1 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
18 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
19 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
23 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
24 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
25 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
26 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
28 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
29 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
31 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
33 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
34 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 3 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | -2 |
35 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
36 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 |