1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.08 | 3.65 | 3.25 | 4.15 | 1.21 | 2.17 | 1.64 | 1.42 | 2.72 | 1.54 | 2.3 | 1.32 | 1.27 | 1.72 | 4.15 | 1.95 | 2.85 | 16 |
Ομάδα | Θέση | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
---|---|---|---|---|---|---|---|---|---|
Ρέιντζερς | 32 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 |
Στουρμ Γκρατς | 35 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 |
Δ/Α | Αγώνας |
---|---|
ΑΥΣ1 / 8 |
Στουρμ Γκρατς
1 - 0
Χάρτμπεργκ
|
EUROPA / 1 |
Μίντιλαντ
2 - 0
Στουρμ Γκρατς
|
ΑΥΣ1 / 7 |
Σάλτσμπουργκ
0 - 2
Στουρμ Γκρατς
|
ΑΥΚ / 7 |
Ρόθις
0 - 2
Στουρμ Γκρατς
|
ΑΥΣ1 / 6 |
Στουρμ Γκρατς
0 - 1
Αούστρια Βιέννης
|
Δ/Α | Αγώνας |
---|---|
ΣΚΩΠ / 6 |
Λίβινγκστον
1 - 2
Ρέιντζερς
|
EUROPA / 1 |
Ρέιντζερς
0 - 1
Γκενκ
|
League Cup / 1 |
Ρέιντζερς
2 - 0
Χιμπέρνιαν
|
ΣΚΩΠ / 5 |
Ρέιντζερς
0 - 2
Χαρτς
|
ΣΚΩΠ / 4 |
Ρέιντζερς
0 - 0
Σέλτικ
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Στουρμ Γκρατς | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
Ρέιντζερς | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 1 | 3 |
2 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
5 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
6 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
10 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
11 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
12 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
13 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | ![]() |
1 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 0 |
16 | ![]() |
1 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
18 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
19 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
23 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
24 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
25 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
26 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
28 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
29 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
31 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
33 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
34 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 3 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | -2 |
35 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
36 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 |