1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.12 | 3.65 | 3.15 | 4.25 | 1.2 | 2.22 | 1.61 | 1.47 | 2.57 | 1.52 | 2.32 | 1.34 | 1.27 | 1.7 | 4.25 | 2 | 2.72 | 14.5 |
Ομάδα | Θέση | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
---|---|---|---|---|---|---|---|---|---|
Φερεντσβάρος | 11 | 4 | 2 | 1 | 1 | 0 | 2 | 1 | 1 |
Σάλτσμπουργκ | 34 | 0 | 2 | 0 | 0 | 2 | 0 | 3 | -3 |
Ημερομηνία | Αγωνιστική | Αγώνας | Διοργάνωση |
---|---|---|---|
30/06/2023 | Club Friendlies 3 |
Σάλτσμπουργκ
2 - 1
Φερεντσβάρος
|
Friendlies Clubs |
Δ/Α | Αγώνας |
---|---|
ΑΥΣ1 / 10 |
Σάλτσμπουργκ
2 - 2
Αλτάχ
|
ΑΥΣ1 / 9 |
Σάλτσμπουργκ
2 - 1
Ραπίντ Βιέννης
|
EUROPA / 2 |
Λυών
2 - 0
Σάλτσμπουργκ
|
ΑΥΣ1 / 8 |
WSG Τιρόλ
1 - 2
Σάλτσμπουργκ
|
EUROPA / 1 |
Σάλτσμπουργκ
0 - 1
Πόρτο
|
Δ/Α | Αγώνας |
---|---|
ΟΥΓ1 / 10 |
Ούιπεστ
1 - 1
Φερεντσβάρος
|
ΟΥΓ1 / 9 |
Φερεντσβάρος
2 - 2
Πάξι
|
EUROPA / 2 |
Γκενκ
0 - 1
Φερεντσβάρος
|
ΟΥΓ1 / 8 |
Γκιόρι ΕΤΟ
0 - 2
Φερεντσβάρος
|
EUROPA / 1 |
Φερεντσβάρος
1 - 1
Βικτόρια Πλζεν
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Σάλτσμπουργκ | 2 | 0 | 2 | 1 | 0 | 1 | 1 | 0 | 1 |
Φερεντσβάρος | 2 | 0 | 2 | 1 | 0 | 1 | 1 | 0 | 1 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
6 | 2 | 2 | 0 | 0 | 6 | 2 | 4 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 2 |
2 | ![]() |
6 | 2 | 2 | 0 | 0 | 5 | 2 | 3 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | 2 | 1 |
3 | ![]() |
6 | 2 | 2 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 2 |
4 | ![]() |
6 | 2 | 2 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 2 |
5 | ![]() |
6 | 2 | 2 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 1 |
6 | ![]() |
6 | 2 | 2 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
7 | ![]() |
6 | 2 | 2 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
8 | ![]() |
4 | 2 | 1 | 1 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 1 | 0 |
9 | ![]() |
4 | 2 | 1 | 1 | 0 | 4 | 2 | 2 | 0 | 1 | 0 | 2 | 2 | 0 | 1 | 0 | 0 | 2 | 0 | 2 |
10 | ![]() |
4 | 2 | 1 | 1 | 0 | 3 | 2 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
11 | ![]() |
4 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
12 | ![]() |
3 | 2 | 1 | 0 | 1 | 5 | 3 | 2 | 0 | 0 | 1 | 1 | 2 | -1 | 1 | 0 | 0 | 4 | 1 | 3 |
13 | ![]() |
3 | 2 | 1 | 0 | 1 | 4 | 3 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 1 | 1 | 2 | -1 |
14 | ![]() |
3 | 2 | 1 | 0 | 1 | 3 | 2 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | 1 | 2 | -1 |
15 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | -1 | 1 | 0 | 0 | 2 | 1 | 1 |
16 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | -1 | 1 | 0 | 0 | 2 | 1 | 1 |
17 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 |
18 | ![]() |
3 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | -1 | 1 | 0 | 0 | 1 | 0 | 1 |
19 | ![]() |
3 | 2 | 1 | 0 | 1 | 3 | 4 | -1 | 0 | 0 | 1 | 1 | 4 | -3 | 1 | 0 | 0 | 2 | 0 | 2 |
20 | ![]() |
3 | 2 | 1 | 0 | 1 | 3 | 4 | -1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 3 | -2 |
21 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 1 | 0 | 2 | -2 | 1 | 0 | 0 | 2 | 1 | 1 |
22 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 3 | -1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | -2 |
23 | ![]() |
3 | 2 | 1 | 0 | 1 | 2 | 3 | -1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 2 | -2 |
24 | ![]() |
3 | 2 | 1 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 0 | 2 | -2 | 1 | 0 | 0 | 1 | 0 | 1 |
25 | ![]() |
1 | 2 | 0 | 1 | 1 | 4 | 5 | -1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 1 | 0 | 2 | 2 | 0 |
26 | ![]() |
1 | 2 | 0 | 1 | 1 | 2 | 3 | -1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | -1 |
27 | ![]() |
1 | 2 | 0 | 1 | 1 | 1 | 2 | -1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
28 | ![]() |
1 | 2 | 0 | 1 | 1 | 1 | 3 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | -2 |
29 | ![]() |
1 | 2 | 0 | 1 | 1 | 1 | 3 | -2 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 1 | 0 | 1 | 1 | 0 |
30 | ![]() |
1 | 2 | 0 | 1 | 1 | 1 | 3 | -2 | 0 | 0 | 1 | 1 | 3 | -2 | 0 | 1 | 0 | 0 | 0 | 0 |
31 | ![]() |
0 | 2 | 0 | 0 | 2 | 2 | 4 | -2 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 |
32 | ![]() |
0 | 2 | 0 | 0 | 2 | 1 | 3 | -2 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 1 | 2 | -1 |
33 | ![]() |
0 | 2 | 0 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 |
34 | ![]() |
0 | 2 | 0 | 0 | 2 | 0 | 3 | -3 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 2 | -2 |
35 | ![]() |
0 | 2 | 0 | 0 | 2 | 0 | 3 | -3 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 1 | 0 | 1 | -1 |
36 | ![]() |
0 | 2 | 0 | 0 | 2 | 1 | 5 | -4 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 0 | 3 | -3 |