1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | 3.6 | 3.1 | 4.75 | 1.17 | 2.32 | 1.55 | 1.5 | 2.45 | 1.48 | 2.45 | 1.34 | 1.25 | 1.68 | 4.75 | 2.02 | 2.62 | 14 |
Δ/Α | Αγώνας |
---|---|
Premier / 4 |
Μπρέινταμπλικ Κοπαβογκούρ
1 - 2
Vikingur Reykjavik
|
Premier / 3 |
Μπρέινταμπλικ Κοπαβογκούρ
3 - 1
Φραμ Ρέικιαβικ
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Λωζάνη
3 - 0
Μπρέινταμπλικ Κοπαβογκούρ
|
Premier / 2 |
Χαφνάρφιορντουρ
1 - 1
Μπρέινταμπλικ Κοπαβογκούρ
|
Premier / 1 |
Valur Reykjavik
1 - 1
Μπρέινταμπλικ Κοπαβογκούρ
|
Δ/Α | Αγώνας |
---|---|
ΦΙΝ1 / 5 |
Κουόπιο
3 - 1
Ελσίνκι
|
ΦΙΝ1 / 6 |
Ίλβες
1 - 1
Κουόπιο
|
ΦΙΝ1 / 4 |
Ίντερ Τούρκου
0 - 3
Κουόπιο
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Κουόπιο
1 - 1
Ντρίτα
|
ΦΙΝ1 / 3 |
Γνίνσταν
0 - 4
Κουόπιο
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Μπρέινταμπλικ Κοπαβογκούρ | 3 | 3 | 0 | 1 | 1 | 0 | 2 | 2 | 0 |
Κουόπιο | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
3 | 1 | 1 | 0 | 0 | 5 | 0 | 5 | 1 | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 0 | 4 | 1 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 |
8 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 2 | 1 |
12 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
13 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
14 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
15 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
18 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
20 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | ![]() |
0 | 1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
24 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
27 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 3 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | -2 |
28 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
29 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
31 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
32 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
33 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
34 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | -3 |
35 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | -4 |
36 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 5 | -5 |