1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.05 | 3.3 | 3.55 | 3.05 | 1.34 | 1.71 | 2.05 | 1.25 | 3.7 | 1.84 | 1.85 | 1.27 | 1.31 | 1.68 | 3.05 | 1.91 | 3.8 | 21 |
Δ/Α | Αγώνας |
---|---|
First League / 9 |
Pelister
0 - 0
Σκεντίγια Τέτοβο
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Βαγιεκάνο
2 - 0
Σκεντίγια Τέτοβο
|
First League / 8 |
Σκεντίγια Τέτοβο
2 - 0
Sileks
|
First League / 4 |
Ραμποτνίσκι
0 - 1
Σκεντίγια Τέτοβο
|
First League / 7 |
Σκεντίγια Τέτοβο
1 - 0
Τίβκες Καβαντάρσι
|
Δ/Α | Αγώνας |
---|---|
ΙΡΛΠ / 34 |
Σέλμπουρν
3 - 1
Σλίγκο Ρόβερς
|
ΙΡΛΠ / 33 |
Κορκ Σίτι
1 - 2
Σέλμπουρν
|
ΙΡΛΠ / 28 |
Σάμροκ Ρόβερς
0 - 1
Σέλμπουρν
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Σέλμπουρν
0 - 0
Χάκεν
|
ΙΡΛΠ / 32 |
Σέλμπουρν
2 - 1
Γουότερφορντ Γιουνάιτεντ
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Σκεντίγια Τέτοβο | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
Σέλμπουρν | 3 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 1 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
3 | 1 | 1 | 0 | 0 | 5 | 0 | 5 | 1 | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 0 | 4 | 1 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 |
8 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 2 | 1 |
12 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
13 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
14 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
15 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
18 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
20 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | ![]() |
0 | 1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
24 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
27 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 3 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | -2 |
28 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
29 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
31 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
32 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
33 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
34 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | -3 |
35 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | -4 |
36 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 5 | -5 |