1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.87 | 3.25 | 2.4 | 3.2 | 1.31 | 1.75 | 1.98 | 1.27 | 3.45 | 1.75 | 1.95 | 1.54 | 1.31 | 1.38 | 3.2 | 1.91 | 3.55 | 19.5 |
Ημερομηνία | Αγωνιστική | Αγώνας | Διοργάνωση |
---|---|---|---|
08/01/2025 | Club Friendlies 5 |
Ράκοβ
3 - 2
Σίγκμα Όλομουτς
|
Friendlies Clubs |
Δ/Α | Αγώνας |
---|---|
ΤΣΧ1 / 12 |
Κάρβινα
1 - 1
Σίγκμα Όλομουτς
|
ΤΣΧ1 / 11 |
Σίγκμα Όλομουτς
2 - 0
Γιάμπλονετς
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Φιορεντίνα
2 - 0
Σίγκμα Όλομουτς
|
ΤΣΧ1 / 10 |
Μποέμιανς 1905
2 - 2
Σίγκμα Όλομουτς
|
ΤΣΕΚ / 10 |
Νόβε Σάντι
3 - 2
Σίγκμα Όλομουτς
|
Δ/Α | Αγώνας |
---|---|
ΠΟΛ1 / 12 |
Κρακοβία
2 - 0
Ράκοβ
|
ΠΟΛ1 / 11 |
Ράκοβ
2 - 0
LKP Μότορ Λούμπλιν
|
Γιουρόπα Κόνφερενς Λιγκ / 1 |
Ράκοβ
2 - 0
Γιουνιβερσιτατέα Κραϊόβα
|
ΠΟΛ1 / 10 |
Βίτζεβ Λοτζ
0 - 1
Ράκοβ
|
ΠΟΛ1 / 6 |
Ράκοβ
2 - 2
Λεχ Πόζναν
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Σίγκμα Όλομουτς | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
Ράκοβ | 7 | 3 | 4 | 4 | 1 | 3 | 3 | 2 | 1 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
3 | 1 | 1 | 0 | 0 | 5 | 0 | 5 | 1 | 0 | 0 | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 0 | 4 | 1 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
3 | 1 | 1 | 0 | 0 | 4 | 1 | 3 | 1 | 0 | 0 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 0 | 3 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 |
8 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | ![]() |
3 | 1 | 1 | 0 | 0 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 2 | 1 |
12 | ![]() |
3 | 1 | 1 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 1 |
13 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
14 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
15 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | ![]() |
3 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
18 | ![]() |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
20 | ![]() |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | ![]() |
0 | 1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 1 | 2 | 3 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
24 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -1 |
27 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 3 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | -2 |
28 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
29 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
31 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | -2 |
32 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
33 | ![]() |
0 | 1 | 0 | 0 | 1 | 1 | 4 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | -3 |
34 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | -3 |
35 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | -4 |
36 | ![]() |
0 | 1 | 0 | 0 | 1 | 0 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 5 | -5 |