1 | X | 2 | U 1,5 | O 1,5 | U 2,5 | O 2,5 | U 3,5 | O 3,5 | G | NG | 1X | 12 | X2 | 0-1 | 2-3 | 4-6 | 7+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.75 | 3.6 | 1.65 | 2.95 | 1.34 | 1.68 | 2.05 | 1.23 | 3.7 | 1.98 | 1.7 | 13 | 19 | 3.5 | 2.95 |
Ομάδα | Θέση | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
---|---|---|---|---|---|---|---|---|---|
Ρίβερ Πλέιτ | 1 | 18 | 8 | 6 | 0 | 2 | 14 | 5 | 9 |
Σέντραλ Κόρδοβα | 25 | 8 | 8 | 2 | 2 | 4 | 4 | 10 | -6 |
Ημερομηνία | Αγωνιστική | Αγώνας | Διοργάνωση |
---|---|---|---|
22/08/2022 | 15 |
Ρίβερ Πλέιτ
3 - 0
Σέντραλ Κόρδοβα
|
Κόπα Λίγκα Προφεσιονάλ |
26/09/2021 | 13 |
Σέντραλ Κόρδοβα
1 - 3
Ρίβερ Πλέιτ
|
Κόπα Λίγκα Προφεσιονάλ |
17/04/2021 | 10 |
Σέντραλ Κόρδοβα
0 - 5
Ρίβερ Πλέιτ
|
Κόπα Λίγκα Προφεσιονάλ |
02/02/2020 | 18 |
Ρίβερ Πλέιτ
2 - 0
Σέντραλ Κόρδοβα
|
Κόπα Λίγκα Προφεσιονάλ |
14/12/2019 | 18 |
Σέντραλ Κόρδοβα
0 - 3
Ρίβερ Πλέιτ
|
Κύπελλο |
Δ/Α | Αγώνας |
---|---|
ΑΡΓ1 / 8 |
Βελέζ Σάρσφιλντ
4 - 0
Σέντραλ Κόρδοβα
|
ΑΡΓ1 / 7 |
Σέντραλ Κόρδοβα
2 - 0
Τίγκρε
|
ΑΡΓ1 / 6 |
Πλατένσε (Αργ.)
1 - 1
Σέντραλ Κόρδοβα
|
ΑΡΓ1 / 5 |
Σέντραλ Κόρδοβα
1 - 0
Αρχεντίνος Τζούνιορς
|
ΑΡΓ1 / 4 |
Ταγιέρες
2 - 0
Σέντραλ Κόρδοβα
|
Δ/Α | Αγώνας |
---|---|
ΑΡΓ1 / 8 |
Σαρμιέντο
0 - 2
Ρίβερ Πλέιτ
|
ΑΡΓ1 / 7 |
Ρίβερ Πλέιτ
3 - 0
Γοδόι Κρουζ
|
ΑΡΓΚ / 7 |
Ρίβερ Πλέιτ
3 - 0
Ρασίνγκ Κόρντομπα
|
ΑΡΓ1 / 6 |
Ατλέτικο Λανούς
0 - 2
Ρίβερ Πλέιτ
|
ΑΡΓ1 / 5 |
Ρίβερ Πλέιτ
1 - 2
Άρσεναλ Σαραντί
|
ΣΥΝΟΛΟ | ΕΝΤΟΣ | ΕΚΤΟΣ | |||||||
---|---|---|---|---|---|---|---|---|---|
Ομάδα | Αγώνες | Over | Under | Αγώνες | Over | Under | Αγώνες | Over | Under |
Σέντραλ Κόρδοβα | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Ρίβερ Πλέιτ | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
18 | 8 | 6 | 0 | 2 | 14 | 5 | 9 | 2 | 0 | 1 | 6 | 3 | 3 | 4 | 0 | 1 | 8 | 2 | 6 |
2 | ![]() |
16 | 8 | 5 | 1 | 2 | 10 | 4 | 6 | 4 | 0 | 0 | 7 | 0 | 7 | 1 | 1 | 2 | 3 | 4 | -1 |
3 | ![]() |
14 | 8 | 4 | 2 | 2 | 11 | 6 | 5 | 2 | 1 | 1 | 7 | 5 | 2 | 2 | 1 | 1 | 4 | 1 | 3 |
4 | ![]() |
14 | 8 | 4 | 2 | 2 | 11 | 7 | 4 | 2 | 2 | 0 | 5 | 3 | 2 | 2 | 0 | 2 | 6 | 4 | 2 |
5 | ![]() |
14 | 8 | 4 | 2 | 2 | 10 | 6 | 4 | 2 | 1 | 1 | 5 | 3 | 2 | 2 | 1 | 1 | 5 | 3 | 2 |
6 | ![]() |
14 | 8 | 4 | 2 | 2 | 9 | 7 | 2 | 4 | 0 | 0 | 5 | 0 | 5 | 0 | 2 | 2 | 4 | 7 | -3 |
7 | ![]() |
14 | 8 | 4 | 2 | 2 | 10 | 11 | -1 | 3 | 1 | 0 | 5 | 2 | 3 | 1 | 1 | 2 | 5 | 9 | -4 |
8 | ![]() |
13 | 8 | 4 | 1 | 3 | 12 | 8 | 4 | 2 | 0 | 3 | 5 | 5 | 0 | 2 | 1 | 0 | 7 | 3 | 4 |
9 | ![]() |
13 | 8 | 3 | 4 | 1 | 11 | 8 | 3 | 1 | 3 | 0 | 4 | 2 | 2 | 2 | 1 | 1 | 7 | 6 | 1 |
10 | ![]() |
12 | 8 | 3 | 3 | 2 | 12 | 7 | 5 | 2 | 2 | 1 | 9 | 4 | 5 | 1 | 1 | 1 | 3 | 3 | 0 |
11 | ![]() |
12 | 8 | 3 | 3 | 2 | 12 | 10 | 2 | 2 | 1 | 1 | 6 | 5 | 1 | 1 | 2 | 1 | 6 | 5 | 1 |
12 | ![]() |
12 | 8 | 4 | 0 | 4 | 7 | 7 | 0 | 3 | 0 | 1 | 6 | 2 | 4 | 1 | 0 | 3 | 1 | 5 | -4 |
13 | ![]() |
11 | 8 | 3 | 2 | 3 | 7 | 5 | 2 | 2 | 1 | 0 | 5 | 1 | 4 | 1 | 1 | 3 | 2 | 4 | -2 |
14 | ![]() |
11 | 8 | 3 | 2 | 3 | 9 | 8 | 1 | 2 | 2 | 1 | 6 | 4 | 2 | 1 | 0 | 2 | 3 | 4 | -1 |
15 | ![]() |
11 | 8 | 3 | 2 | 3 | 5 | 9 | -4 | 1 | 1 | 1 | 2 | 3 | -1 | 2 | 1 | 2 | 3 | 6 | -3 |
16 | ![]() |
10 | 8 | 2 | 4 | 2 | 11 | 13 | -2 | 1 | 3 | 1 | 7 | 8 | -1 | 1 | 1 | 1 | 4 | 5 | -1 |
17 | ![]() |
9 | 8 | 2 | 3 | 3 | 9 | 10 | -1 | 1 | 2 | 1 | 3 | 3 | 0 | 1 | 1 | 2 | 6 | 7 | -1 |
18 | ![]() |
9 | 8 | 2 | 3 | 3 | 4 | 6 | -2 | 1 | 3 | 0 | 1 | 0 | 1 | 1 | 0 | 3 | 3 | 6 | -3 |
19 | ![]() |
8 | 8 | 2 | 2 | 4 | 10 | 11 | -1 | 1 | 0 | 3 | 7 | 9 | -2 | 1 | 2 | 1 | 3 | 2 | 1 |
20 | ![]() |
8 | 8 | 1 | 5 | 2 | 7 | 9 | -2 | 0 | 2 | 2 | 5 | 8 | -3 | 1 | 3 | 0 | 2 | 1 | 1 |
21 | ![]() |
8 | 8 | 2 | 2 | 4 | 8 | 11 | -3 | 0 | 1 | 2 | 2 | 4 | -2 | 2 | 1 | 2 | 6 | 7 | -1 |
22 | ![]() |
8 | 8 | 2 | 2 | 4 | 7 | 10 | -3 | 1 | 1 | 2 | 3 | 5 | -2 | 1 | 1 | 2 | 4 | 5 | -1 |
23 | ![]() |
8 | 8 | 2 | 2 | 4 | 7 | 11 | -4 | 1 | 1 | 2 | 4 | 6 | -2 | 1 | 1 | 2 | 3 | 5 | -2 |
24 | ![]() |
8 | 8 | 2 | 2 | 4 | 5 | 11 | -6 | 2 | 1 | 1 | 4 | 3 | 1 | 0 | 1 | 3 | 1 | 8 | -7 |
25 | ![]() |
8 | 8 | 2 | 2 | 4 | 4 | 10 | -6 | 2 | 0 | 2 | 3 | 3 | 0 | 0 | 2 | 2 | 1 | 7 | -6 |
26 | ![]() |
7 | 8 | 1 | 4 | 3 | 6 | 9 | -3 | 1 | 1 | 2 | 4 | 6 | -2 | 0 | 3 | 1 | 2 | 3 | -1 |
27 | ![]() |
7 | 8 | 1 | 4 | 3 | 5 | 10 | -5 | 1 | 2 | 1 | 3 | 4 | -1 | 0 | 2 | 2 | 2 | 6 | -4 |
28 | ![]() |
5 | 8 | 0 | 5 | 3 | 6 | 10 | -4 | 0 | 2 | 2 | 3 | 6 | -3 | 0 | 3 | 1 | 3 | 4 | -1 |
ΣΥΝΟΛΟ | ΕΝΤΟΣ ΕΔΡΑΣ | ΕΚΤΟΣ ΕΔΡΑΣ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Θέση | Ομάδα | Βαθμοί | Αγώνες | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- | Ν | Ι | H | Γ/Υ | Γ/Κ | +/- |
1 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | ![]() |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |